Pushing fillings in right-angled Artin groups

نویسندگان

  • Aaron Abrams
  • Noel Brady
  • Pallavi Dani
  • Moon Duchin
  • Robert Young
چکیده

We define a family of quasi-isometry invariants of groups called higher divergence functions, which measure isoperimetric properties “at infinity.” We give sharp upper and lower bounds on the divergence functions for right-angled Artin groups, using different pushing maps on the associated cube complexes. In the process, we define a class of RAAGs we call orthoplex groups, which have the property that their Bestvina-Brady subgroups have hard-to-fill spheres. Our results give sharp bounds on the higher Dehn functions of Bestvina-Brady groups, a complete characterization of the divergence of geodesics in RAAGs, and an upper bound for filling loops at infinity in the mapping class group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Actions of right-angled Artin groups in low dimensions

We survey the role of right-angled Artin groups in the theory of diffeomorphism groups of low dimensional manifolds. We first describe some of the subgroup structure of right-angled Artin groups. We then discuss the interplay between algebraic structure, compactness, and regularity for group actions on one–dimensional manifolds. For compact one–manifolds, every right-angled Artin group acts fai...

متن کامل

2 00 6 On the profinite topology of right - angled Artin groups

In the present work, we give necessary and sufficient conditions on the graph of a right-angled Artin group that determine whether the group is subgroup separable or not. Also, we show that right-angled Artin groups are conjugacy separable. Moreover, we investigate the profinite topology of F 2 × F 2 and of the group L in [22], which are the only obstructions for the subgroup separability of th...

متن کامل

Se p 20 06 On the profinite topology of right - angled Artin groups

In the present work, we give necessary and sufficient conditions on the graph of a right-angled Artin group that determine whether the group is subgroup separable or not. Also, we show that right-angled Artin groups are conjugacy separable. Moreover, we investigate the profinite topology of F 2 × F 2 and of the group L in [22], which are the only obstructions for the subgroup separability of th...

متن کامل

Right-angled Mock Reflection and Mock Artin Groups

We define a right-angled mock reflection group to be a group G acting combinatorially on a CAT(0) cubical complex such that the action is simply-transitive on the vertex set and all edge-stabilizers are Z2. We give a combinatorial characterization of these groups in terms of graphs with local involutions. Any such graph Γ not only determines a mock reflection group, but it also determines a rig...

متن کامل

Cryptography with right-angled Artin groups

In this paper we propose right-angled Artin groups as platform for a secret sharing scheme based on the efficiency (linear time) of the word problem. We define two new problems: subgroup isomorphism problem for Artin subgroups and group homomorphism problem in right-angled Artin groups. We show that the group homomorphism and graph homomorphism problems are equivalent, and the later is known to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2013